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The primary objective of this work is to demonstrate that a radial basis function (RBF) 

optimized with four different evaloutionary optimizers can effectively to predict with high 

accuracy the oil flow rate and oil recovery factor that results when a crude oil reservoir is 

flooded with foam-CO2. Injecting CO2 together with surfactant in the form of a foam can 

significantly improve a crude oil reservoir’s sweep efficiency. Here, we couple a radial basis 

function (RBF) with evolutionary algorithms (particle swarm, imperialist competitive, 

genetic and teaching-learning based) to develop four hybrid-RBF prediction networks and 

apply them to predict efficiency of foam-CO2 flooding in oil reservoirs. A dataset with 214 

published data records was compiled and used to train, optimize and test the four hybrid-

RBF networks. The teaching-learning-based optimized (TLBO-RBF) model achieved the 

most accurate prediction performance, applied to the full dataset, for estimating oil flow rate 

(RMSE =0.0031, R2 = 0.997) oil recovery factor (RMSE =0.0175, R2 = 0.999) for the foam-

CO2 injection EOR dataset. It can therefore be considered as another algorithm for assessing 

the impacts of foam-CO2 stimulation of oil-bearing reservoirs efficiently in cases where 

detailed core measurements are not available.  

 

1. Introduction 

A considerable quantity of petroleum is typically left in 

subsurface reservoirs following primary and secondary 

production processes [1, 2]. A significant portion of this 

residual oil can be recovered by applying a range of 

enhanced oil recovery (EOR) techniques [3]. Chemical 

flooding of a subsurface reservoir with polymers, surfactant 

and other chemicals, injection of non-hydrocarbon gases 

(e.g. carbon dioxide), thermal methods including steam and 

hot water injection and microbial enhanced oil recovery are 

among the most widely studied, tested and deployed EOR 

methods [4, 5].  

CO2 injected into sub-surface reservoirs with EOR 

objectives has significant potential to mitigate the quantity 

of anthropogenic CO2 that makes its way into the 

atmosphere while. It can do this while also enhancing oil 

recovery, thereby boosting energy supply [6, 7, 8]. 

Foams used for EOR tend to be produced by alternately 

injecting or co-injecting gases (e.g. nitrogen, CO2, air, 

natural gas) and foaming agents (an aqueous solution 

containing a surfactant) into the porous reservoir media. 
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Such foam injection is typically effective in modifying the 

unfavorable mobility ratio of that porous media. It achieves 

this by decreasing relative permeability of the pore space and 

fluids to CO2 and improving the overall sweep efficiency of 

the reservoir [9, 10]. Many successful field applications of 

foam injection have demonstrated its ability to increase 

displacement efficiency compared to basic gas-injection 

techniques [11, 12].  

Designing, managing and running foam-CO2 injection 

experiments that quantitatively measure oil displacement 

and production rate from reservoir cores are expensive and 

time consuming [13, 14]. Hence, the motivation for this 

study is that there are clear cost advantages and time savings 

in developing foam-CO2 performance prediction models as 

way way to reducing the number of expensive experiments 

that need to be performed [15]. Such models typically 

evaluate and integrate the performance results of foam-CO2 

laboratory-based, core injection tests [16]. Foam-CO2 

laboratory tests typically focus on determining the flow rate 

of oil (Q) through cores of porous media and the recovery of 

oil from such cores (RF) [17]. These parameters are used to 

evaluate the performance of foam-CO2 injection applied to 
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specific reservoirs [18]. Their values establish whether it is 

viable and worthwhile applying this EOR method to those 

reservoirs [19].   

Some numerical methods have been developed for 

predicting either Q or RF for chemical EOR (CEOR) 

techniques [20], there are few methods that provide precise 

and fast prediction of oil recovery factor and oil flow rate 

based on a significant dataset of foam-CO2 injection tests 

[21]. The primary objective here is to develop and access the 

performance of efficient and effective machine-learning 

models which can predict Q and RF related to a compilation 

of published laboratory data of foam-CO2 injection tests into 

reservoir cores. 

The key novel contribution of this study is that we apply 

a radial basis function (RBF) hybridized with four 

evolutionary optimization algorithms (see section 2.3 for a 

description of the four evolutionary algorithms applied) to 

develop accurate and robust prediction tools for reliably 

forecasting the efficiency (i.e., and production rate of oil, Q 

and oil recovery factor, RF) related to foam-CO2 injection 

into various oil reservoirs. The prediction accuracy achieved 

for oil recovery factor and oil flow rate associated with a 

range of foam-CO2 injection tests using the four hybridized 

RBF-optimizer models is then compared, and the most 

accurate model identified..  

2. Methodology 

2.1. Data Compilation 

This computational investigation uses a compiled data set 

of published results extracted from previous experimental 

studies of foam-CO2 reservoir injection core tests compiled 

by Moosavi et al. [21] from previously published sources: 81 

from Zhao [22];  45 from  Ydstebø [23]; 48 from Turta & 

Singhal [24]; and, 40 from Li et al. [25]. The total data 

records evaluated is 214, of which 171 data records are 

dedicated to a training data subset and 43 data records are 

devoted to a testing data subset. Each data records consists 

of measured values for six input variables:  

• kind of surfactant; 

• porosity of reservoir rock (%); 

• permeability of reservoir rock (mD);  

• pore volume of testing core (cm3);  

• oil initial saturation; and, 

• the number pore volumes of foam-CO2 injected.  

RF and Q are the associate variables to be predicted by 

the models. The minimum to maximum range for 6-

independent variables associated with core tests are 

displayed in Table 1. 

2.2. Radial Basis Function (RBF)  

      RBF is one kind of artificial neural network (ANN) 

algorithm [26], and together with the multi-layer perceptron 

(MLP) [27], it is one of the most popular ANN methods. 

ANNs exploiting the RBF algorithm are feed-forward neural 

networks with a simple network structure with just three-

fixed layers: input, hidden, and output. This leads RBF to 

have simpler structure than an MLP, which typically 

involves more than one hidden layer, making it easier  to 

train an RBF network than an MLP network. Also, the 

simple structure of an RBF network makes it easier for it 

process data records that are outside the ranges covered by 

the training data subset [28]. 

Input variable x generates RBF output by applying Eq. (1). 

𝑦𝑖(𝑥) = ∑ 𝑤𝑖 ∅
𝑚
𝑖=1 (‖x − 𝑥𝑖‖)                                           (1) 

where 

𝑦𝑖(𝑥)= ith output;  

m =  hidden-layer nodes; 

i =  ith  hidden-layer node; 

𝑤𝑖 = weight connecting ith hidden-layer node to ith output; 

∅ = the radial-basis function (RBF); and, 

‖𝑥 − 𝑥𝑖‖= Euclidean-distance norm of ith output. 

RBFs of several different forms could be used. In this study 

a Gaussian RBF which is commonly exploited for such 

purposes [28, 29] is applied, as defined by Eq. (2). 

(∅(‖x − xi‖)) = exp (−
(‖x−xi‖)2

2𝜎2 )                                               (2) 

where 

xi = Gaussian-function center; and, 

σ = standard deviation or uncertainty range of the Gaussian 

function.  

      Applying Eq. (2) means that if the distance of an input 

from the center of the Gaussian distribution diminishes, then 

the value of the Gaussian RBF function also declines. The 

RBF algorithm defined in terms of Eqs. (1) and (2) can 

effectively derive  a global optimal solution by adjusting the 

hidden-layer nodes’ weights (W) and biases (b) to minimize 

mean square error (MSE) of the predicted versus laboratory-

test values of its dependent variables (Q and RF). In its basic 

form the algorithm seeks this minimum MSE solution with 

the aid of a linear optimization method.  In order to improve 

the optimization process employed by the RBF network, 

several evolutionary optimization algorithms (described in 

the following sections) are tested here to establish their 

ability to improve upon the performance of the basic linear 

optimizer.  

2.3. Hybridizing the RBF Network with Evolutionary 

Optimization Algorithms 

2.3.1. Genetic Algorithm 

     Genetic optimization algorithms (GA) are now 

extensively applied to solve a varied range of non-linear 

technical problems with single and multiple objective 

functions [31]. Random chromosomal selection processes 

analogous to those involved in biological genetic evolution 

are exploited to generate a population of feasible solutions. 

The effective genetic processes or operators involving 

mutation and crossover are employed in GA. 
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Table 1. 6-metric ranges for foam-CO2-injection dataset used for EOR tests compiled from four identified published sources. 

Type of Surfactant 
Porosity 

(%) 

Permeabi

lity (mD) 

Initial Oil in 

Place Saturation 
(%) 

Injected Pore 

Volume of Foam 

Total Core 

Pore Volume 
(cm3) 

Number 

of Data 
Records 

References 

Bio-Terge AS-40 25.8-34.8 8.5-28.2 94-97 0.3-18 45-49 42 Zhao, 2017 [22] 

Triton X-100 23.6-34.8 9-28.2 94-97 0.2-27 44-49 45 Ydstebø, 2013 [23] 
VT-90 24.1-34.8 11-28.2 94-97 0.2-23 47-49 40 Li et al., 2010 [25] 

Brine 27-34.8 10.5-28.2 94-97 0.2-16 46-49 39 Zhao, 2017 [22] 

AOS C14/16 30-34.8 8.5-28.2 94-97 0.2-34 47-49 48 Turta & Singhal, 2002 [24] 

The GA procedure commences with the primary 

chromosomes (independent variables), the variable values 

are then selected using random probability distributions 

between 0 and 1. This crossover probability applied to 

generate individual solutions for the next generation from 

high-ranking parent solutions is influenced by the GA 

control variables mutation factor (MF) and crossover factor 

(CF), which can be varied as the generations evolve to 

become more focused or search more broadly. 

2.3.2. Imperialist Competitive Algorithm (ICA) 

     This algorithm exploits processes analogous to the 

observed political competition processes between a colony 

and its governing imperialistic body [32]. ICA in a way 

typical of other optimization algorithms commences with an 

primary randomly-selected population of artificial 

“countries”.  Two types of countries are designated: colonies 

and imperialist powers and the algorithm evolves based on 

the imperialistic competition that ensues between more 

powerful (i.e. those with more attractive fitness functions) 

and less powerful (those with less attractive fitness 

functions) countries. The imperialists “countries” are more 

powerful and therefore control empires with more “colonies” 

and continuously strive to obtain more colonies and increase 

their power. On the other hand, weak imperialist countries 

progressively lose their empires of colonies as the ICA 

algorithm’s iterations progress and those weak empires 

ultimately collapse. As the algorithm evolves, the colonies 

are gradually accumulated by the most powerful imperialist 

country into a single dominant empire, which eventually 

controls all the available colonies. In circumstances where a 

colony achieves a more powerful position than its imperialist 

power, the power status of the imperialist country and its 

stronger colony are interchanged.  

2.3.3. Particle Swarm Optimization (PSO) 

      PSO is an alternative optimization algorithm using a 

probabilistic approach first established by Eberhart & 

Kennedy (1995) [33]. It mimics the interactions of fish in 

shoals, insects in swarms or birds in flocks. Individual swarm 

particles represent potential objective function solutions to 

the optimization goal. A randomly-selected initial 

population of particles is activated to broadly search the 

feasible solution space [34, 35]. In each iteration of the PSO 

algorithm, a fitness test values for the solution associated 

with each particle is evaluated. Based on the fitness test 

scores the position in the feasible solution space of each 

particle is adjusted based on two criteria: 1) the locally best 

position for a particle in the current generation / iteration; 

and, 2) the globally best position for a particle achieved in 

the current and all previous iterations of the algorithm. This 

approach enables the PSO algorithm to explore local and 

global minima in the feasible solution space [36]. The 

algorithm essentially exploits the fitness test as its objective 

function to evaluate the suitability of each particle solution 

and progressively adjusts each particle’s position based on 

that information for each subsequent iteration. It periodically 

replaces the global best particle solution found as the 

iterations progress [37]. 

2.3.4. Teaching-learning-based Optimization (TLBO) 

      The TLBO algorithm, derived by Rao et al. [38] and 

refined by Murty et al. [39], offers an alternative population-

based, nature-inspired optimization method. The population 

involved in the TLBO algorithm is a group or class of 

learners of user-defined number of individuals. For the foam-

CO2 dataset evaluated here the initial population involves 

220 individuals. Two distinct types of learning are involved 

in the TLBO algorithm: 1) teacher stage - learning from the 

teacher; and 2) learner stage - learning from other individual 

learners. Learners’ grades or the fitness of their solutions are 

used to assess the quality of the teacher. Consequently, the 

teacher teaches the learners so that they achieve better results 

or fitter solutions. Learners are also able to learn by 

interactions with each other to boost the compatibility of 

their solutions. The best prevalent solution in the whole 

population is assigned the teacher role in each iteration of the 

algorithm.  

      As an alternative to  RBF optimized with evolutionary 

algorithms, there is the possibility of applying other machine 

learning algorithms such as neural networks combined with 

various fuzzy hierarchy algorithms [40-44]. Future studies 

will compare the prediction accuracy of such alternatives 

with the algorithms evaluated here. 

3. Statistical Measures of Prediction Accuracy Applied   

Page Limitation 

Five prediction-accuracy statistics are calculated to 

examine the estimation efficiency of the developed hybrid 

RBF networks. These measures enable the accuracy of  

laboratory-measured versus predicted outputs (Q and RF) to 

be compared. These five statistical measures of accuracy are: 

  

A. Coefficient of determination: 

𝑅2 = 1 −
∑ (𝑜𝑢𝑡𝑖

𝑟𝑒𝑎𝑙−𝑜𝑢𝑡𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

)2𝑁
𝑖=1

∑ (𝑜𝑢𝑡𝑎𝑣𝑒
𝑟𝑒𝑎𝑙−𝑜𝑢𝑡

𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

)2𝑁
𝑖=1

                                     (3)    

B. Mean squared error:                                                                        

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑜𝑢𝑡𝑖

𝑟𝑒𝑎𝑙 − 𝑜𝑢𝑡𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

)2𝑁
𝑖=1                           (4) 

C. Root mean squared error: 

𝑅𝑀𝑆𝐸 = (
1

𝑁
∑ (𝑜𝑢𝑡𝑖

𝑟𝑒𝑎𝑙 − 𝑜𝑢𝑡𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

)2𝑁
𝑖=1 )1/2               (5) 

D. Average absolute relative deviation: 
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𝐴𝐴𝑅𝐷 =
100

𝑁
∑ |

𝑜𝑢𝑡𝑖
𝑟𝑒𝑎𝑙−𝑜𝑢𝑡𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑜𝑢𝑡𝑖
𝑟𝑒𝑎𝑙 |𝑁

𝑖=1                                (6) 

where 

N = total number of data records; 

𝑜𝑢𝑡𝑖
𝑟𝑒𝑎𝑙  = dependent-variable measured values for each data 

record i; 

𝑜𝑢𝑡𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

 = dependent-variable predicted values for data 

record i; and, 

𝑜𝑢𝑡𝑎𝑣𝑒
𝑟𝑒𝑎𝑙  = Mean of dependent-variable measured values for 

the dataset as a whole. 

E. Standard deviation (SD) 

4. Results 

4.1. Statistical Accuracy Achieved by the Four Hybrid-RBF 

Models Developed 

      Four hybrid RBF neural network models are developed 

and evaluated to predict the foam-CO2 injection EOR 

dependent variables RF and Q. The four hybrid models are: 

 GA-RBF 

 PSO-RBF 

 ICA-RBF 

 TLBO-RBF 

Each model hybridizes one of the non-linear optimization 

algorithms an RBF. 

     Each algorithm evaluates the compiled 214-record dataset 

of experimental foam-CO2 laboratory core-injection tests 

described in section 2.1. 80% of the data records in the full 

dataset are devoted to the training subset for each network, 

the remaining 20% of data records are allocated to a testing 

subset. That testing subset provides an independent 

performance-accuracy test of each hybrid-RBF network 

once it has been trained. 

     RBF network component of each hybrid algorithm has a 

structure involving 38 neurons in its hidden layer. That 

number of neurons was selected based on sensitivity analysis 

considering the five statistical prediction performance 

measures described in section 3. 

    The statistical accuracy achieved by each hybrid-RBF 

network is affected by the specific evolutionary algorithms. 

They optimize the values for the weights (W) and biases (b) 

applied to the network nodes. Table 2 is given the results of 

the statistical precision associating with RF and Q 

estimations for the four distinct optimized hybrid-RBF 

networks evaluated.  These results reveal that all the 

optimized hybrid-RBF networks accurately predict the 

dependent variables. However, the TLBO-RBF network 

achieved the  highest prediction accuracy. 

 

4.2. Comparison of the RF and Q predictions Made by the 

Four Hybrid-RBF Models  

     The trained and optimized hybrid-RBF models are 

applied to predict Q and RF in autonomous testing subsets to 

ascertain their estimation accuracies (Table 2). Once the 

precision is established with the testing-subset data, each 

trained hybrid-RBF is deployed to estimate Q and RF for the 

full dataset (Table 2). Figure 1 compares predicted and 

measured dependent variable values  across the full dataset 

revealing good agreement across the entire data range 

evaluated. These plots show close agreement between 

predictions and experimental data for foam-CO2 tests. 

    Figure 2 (for Q) and Figure 3 (for RF)  further demonstrate 

the dependent-variable prediction accuracy achieved  by 

each of the four hybrid-RBF network models based on 

training-subset and testing-subset prediction results. Figure 

2 show close agreement between predictions and 

experimental data for foam-CO2 tests, with two obvious 

outlying predictions by the ICA-RBF model and one obvious 

outlying prediction by the PSO-RBF model. Figure 3 show 

close agreement between predictions and experimental data 

for foam-CO2 tests, with no obvious outlying predictions for 

any of the four models evaluated. 

 

 
Figure 1. Comparisn of oil flow rate (Q) and  recovery factor (RF) 

values predicted by RBF neural network coupling with 

evolutionary algorithm and experimentally-measured values versus 

the index number assigned to specific records.  

5. Discussion 

5.1. Average Absolute Relative Deviation Achieved by Each 

Hybrid-RBF Model 

Figure 4 (for Q) and Figure 5 (for RF) compare AARD% 

values for each of the hybrid-RBF models evaluated. These 

figures highlight the superior accuracy achieved by the 

TLBO-RBF in predicting Q and RF compared to the other 

hybrid models. 

    For computational efficiency comparisons, the processing 

times for the four hybrid-RBF networks are listed in Table 3. 

TLBO-RBF shows the minimum calculation time of the four 

methods. All methods were evaluated using a computer 

equipped with the same processing unit: Intel(R) Core™ i7 

2630QM CPU @ 2.00 GHz. Algorithms for the four hybrid-

RBF methods are coded with MatLab software. The TLBO-

RBF model required a shorter run time than the other three 

models. 
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Table 2. Prediction accuracy assessment for Q and  RF by four hybrid RBF networks compared for tuning, testing subsets and the full 

dataset including all data records. 

  Model type Dataset 
Recovery factor (RF) Oil flow rate (Q), CC/min 

AARD% MSE R2 RMSE AARD% MSE R2 RMSE 

GA-RBF 

Training 1.2 0.19E-04 9.000 9.9090 1.0 2.21E-05 9.000 9.9900 

Testing 1.0 2.09E-03 9.000 9.9010 1.0 2..1E-05 9.000 9.9902 

Full dataset 1.0 0.19E-04 9.001 9.9090 1.1 2.01E-05 9.001 9.9901 

PSO-RBF 

Training 1.1 0.09E-04 9.001 9.9091 1.0 2.10E-05 9.001 9.990 

Testing 0.2 0.09E-03 9.002 9.9100 0.1 1.21E-05 9.001 9.990. 

Full dataset 1.0 2.09E-03 9.000 9.9010 0 2.01E-05 9.002 9.9901 

ICA-RBF 

Training 1.1 2.19E-03 9.000 9.900. 1.0 2.91E-05 9.00 9.9902 

Testing 0.1 1.19E-03 9.00 9.9.00 0.0 1.92E-05 9.002 9.990. 

Full dataset 1.. 2.29E-03 9.000 9.9002 1.0 2.20E-05 9.000 9.9900 

TLBO-RBF 

Training 9.0 0.19E-04 9.000 9.92.0 2.2 0.19E-06 9.000 9.990 

Testing 2.1 1..9E-04 9.000 9.9100 2.. 2.90E-05 9.000 9.9901 

Full dataset 9.0 0.09E-04 9.000 9.92.1 2.1 0.09E-06 9.00. 9.9902 

 

   

 

 

  

  

  

 

 

 

 

 

 

 

 

 

Figure 2. Predicted versus measured values for oil flow rate (Q) derived  by the four hybrid-RBF neural networks for training subset (green 

circles) and testing subset (red circles).  

 

Table 3. Computational efficiency in terms of calculation speed.  

Solution Method Run Time (Seconds) 

TLBO-RBF 01.10 
GA-RBF 10.00 

ICA- RBF 220.00 
PSO- RBF 200.0. 
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Figure 3. Predicted versus measured values of oil recovery factor (RF) derived by the four hybrid-RBF neural networks for training subset 

(green circles) and testing subset (red circles).  

 

 

 

 

 

 

Figure 4. Calculated average absolute relative deviation 

(AARD%) for oil flow rate (Q), CC/min achieved by each of the 

four hybrid-RBF models.  

 

 

 

 

 

 

Figure 5. Calculated average absolute relative deviation 

(AARD%) for oil recovery factor (RF) achieved by each of the 

four hybrid-RBF models.  

5.2. Input-variable Influences on Q and RF Predictions 

     The foregoing analysis demonstrates that all four hybrid-

RBF models provide impressive prediction accuracy of 

foam-CO2 injection, and the superior performance of the 

TLBO-RBF model.  Nevertheless, it is useful to establish the 

relative contributions of each input variable in these models 

to achieving their prediction performance for Q and RF. An 

evaluation of a relevancy factor (r) [45] for each input 

variable with its magnitude calculated with Eq. (7) provides 

such insight.   

𝑟 =
∑ (𝑋𝑘,𝑖−𝑋𝑘̅̅ ̅̅ )(𝑌𝑖−𝑌̅)𝑛

𝑖=1

√∑ (𝑋𝑘,𝑖−𝑋𝑘̅̅ ̅̅ )2𝑛
𝑖=1 ∑ (𝑌𝑖−𝑌̅)2𝑛

𝑖=1

                                     (7)                               

where 

𝑋𝑘,𝑖 = ith data record value for kth input metric; 

𝑋𝑘
̅̅ ̅= mean kth input metric;  

𝑌𝑖= ith prediction;  

𝑌̅= mean-predicted value;  

n = total data records. 

     r  values calculated with Eq. (7) are constrained between 

-1 and +1. High r values associated with an input variable 

identify that specific input variable is having a substantial 

impact on the dependent-variable predictions. Positive r 

values occur when increases in input variable values lead to 

an increase in dependent variable values. On the other hand, 

negative r values occur when increases in input variable 
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values lead to a decrease in dependent variable values. 

Calculated in this way r reveals those input variables that are 

most influential on dependent variable predictions. 

     Figure 6 displays the relevancy factor calculations for 

each input variable on Q and RF predictions for the high-

performing TLBO-RBF model. This analysis indicates that 

the pore-volume injection magnitude of CO2 is much more 

influential on the Q and RF estimations than the other five 

variables involved. On the contrary, among all six 

independent variables involved, the percentage in-place oil 

saturation (initial) has the lowest influence on predicted Q 

and RF values. 

 

 

 

 

 

 

 

 

Figure 6. Input-variables influences in determining the 

predictions of oil flow rate (Q) and recovery factor (RF) from the 

foam-CO2 injection EOR dataset for the TLBO-RBF model. 

6. Conclusions 

Conducting laboratory experiments to assess the oil 

production and recovery factor performance associated with 

injecting foam-CO2 into specific oil reservoirs is expensive 

and time consuming. Simulation techniques can be a viable 

alternative if they can provide accurate predictions of flow 

rate and recovery factor from a standard set of input 

variables.  CO2 injection into sub-surface oil reservoirs is a 

well-established technique for enhancing oil recovery. 

However, as CO2 is a gas and gases have low reservoir-

sweep efficiency, injecting CO2 together with surfactant in 

the form of a foam can significantly improve its reservoir 

sweep efficiency. So, foam-CO2 flooding of petroleum 

reservoirs is a highly effective method able to enhance oil 

recovery from many reservoirs.    

Four optimized hybrid-RBF artificial neural networks 

demonstrate highly accurate estimation accuracy for oil flow 

rate (Q) and oil recovery factor (RF) in enhanced-oil-

recovery conditions with a 214-record dataset of foam-CO2 

injection tests into oil-saturated cores. Each data record 

evaluated includes values for six independent input variables 

in addition to Q and RF values. Eighty percent of the data 

records were used to train the hybrid-RBF networks. Twenty 

percent of the data records were held independently of the 

training subset in order to test the trained networks.  

    High full-dataset prediction accuracy was attained by all 

four hybrid-RBF models. However, the teaching learning 

based optimization hybrid  model (TLBO-RBF) achieved the 

greatest accuracy in predicting Q (RMSE =0.0031, R2 = 

0.997) and RF (RMSE =0.0175, R2 = 0.999) demonstrating 

its excellent prediction capabilities for the foam-CO2 

injection EOR dataset studied. Based on this prediction 

performance, we conclude that the TLBO-RBF offers the 

best potential to be exploited in predicting, on an 

unsupervised basis, the foam-CO2 enhanced oil recovery 

potential of porous oil-bearing formations with no test data 

on cores available.  
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